
Hacking Nordic proprietary protocol with GNU
Radio

H. Boeglen

European GNURadio days 2019

XLIM, UMR CNRS 6172, Université de Poitiers, France

1 – Nordic Semiconductor 2.4GHz Proprietary
solutions

2 – Bastille Research gr-nordic OOT module

3 – Building a nrf24L01+ transceiver with
GNU Radio

4 – Conclusion

Outline

Outline

1 – Nordic Semiconductor 2.4GHz Proprietary
solutions

2 –

3 –

4 –

Outline

Outline

1. Nordic Semiconductor 2.4GHz Proprietary solutions

1

 NRF24L01+
 Well known by embedded systems guys
 This module can be found on Chineese sites for less than 1€

 For that price most of them are fake (chip copied)

Original (250nm) Fake (350nm)

1. Nordic Semiconductor 2.4GHz Proprietary solutions

2

 NRF24L01+
 Inside NRF24L01+ transceiver

1. Nordic Semiconductor 2.4GHz Proprietary solutions

3

 NRF24L01+
 Main features:

– Worldwide 2.4GHz ISM band operation, 126 RF channels

– GFSK modulation

– 250kbps, 1 and 2Mbps air data rate

– Programmable output power: 0, -6, -12 or -18dBm

– 11.3mA at 0dBm output power

– -94dBm sensitivity at 250kbps

– 1 to 32 bytes dynamic payload length with automatic
packet handling

– Host interface : 4-pin hardware SPI

– 1.9 to 3.6V supply range

https://infocenter.nordicsemi.com/pdf/nRF24L01P_PS_v1.0.pdf?cp=8_4_0_0

1. Nordic Semiconductor 2.4GHz Proprietary solutions

4

 NRF24L01+
 Enhanced ShockBurst (ESB) protocol

1. Nordic Semiconductor 2.4GHz Proprietary solutions

5

 Other NRF Chips
 NRF24LU1+ = NRF24L01+ + USB FS + 8051. Found in Microsoft and

Logitech keyboards and mice
 NRF24L01+ and NRF24LU1+ are not recommended for new designs

 More on this dongle later on

1. Nordic Semiconductor 2.4GHz Proprietary solutions

6

 Other NRF Chips
 NRF52 series (SoC = RF + ARM Cortex M4) are the replacement chips

NRF52832 DK
40€

 NRF52 series can still use Nordic proprietary protocol (ESB)

1. Nordic Semiconductor 2.4GHz Proprietary solutions

7

 Where do we find NRF Chips
 Microsoft and Logitech wireless keyboards and mice
 Drone remote controllers
 Sport watches
 Bike equipment
 Heart rate monitors…

1. Nordic Semiconductor 2.4GHz Proprietary solutions

8

 Well known technology
o Lots of resources about hacks (mice, drones etc,)
o Uses packet communication: interesting to fiddle with it in GNU Radio

 Goal of this tutorial: to build a Nordic ESB compliant
transceiver with GNU Radio

 Two STM32 boards fitted with NRF24L01+ breakout board transmitting
the room temperature every 0.5s (one at 2485MHz and the other at
2500MHz)
 STM32 program + PCB shield (available for those interested)

1 –

2 – Bastille Research gr-nordic OOT module

3 –

4 –

Outline

Outline

2. Bastille Research gr-nordic OOT module

9

 Do we have to start from nothing?
 Not many up to date implementations
 Some of them use the old message queue way of packet transmission,

e.g. : https://github.com/funoverip/gr-cc1111
 I came up with the gr-nordic OOT module from Bastille Research
 Uses GNU Radio message passing interface
 Has been designed to identify vulnerabilities of wireless keyboards and

mice
 Presented at DEF CON 24 (2016) hacking convention

2. Bastille Research gr-nordic OOT module

10

2. Bastille Research gr-nordic OOT module

11

2. Bastille Research gr-nordic OOT module

12

2. Bastille Research gr-nordic OOT module

13

2. Bastille Research gr-nordic OOT module

14

2. Bastille Research gr-nordic OOT module

15

 For more details see:

https://github.com/BastilleResearch/mousejack/tree/master/doc/pdf

1 –

2 –

3 – Building a nrf24L01+ transceiver with
GNU Radio

4 –

Outline

Outline

3. Building a nrf24L01+ transceiver with GNU Radio

16

 Let’s discover gr-nordic!

Get and build gr-nordic:

>> git clone
https://github.com/BastilleResearch/gr-
nordic.git
>> cd gr-nordic
>> mkdir build
>> cd build
>> cmake ../
>> make –j2
>> sudo make install
>> sudo ldconfig

3. Building a nrf24L01+ transceiver with GNU Radio

 Two main blocks:
* nordic_tx : input = nordictap_in message output =
stream of uint8_t

17

3. Building a nrf24L01+ transceiver with GNU Radio

* nordic_rx : input = stream of uint8_t output =
nordictap_out message

18

3. Building a nrf24L01+ transceiver with GNU Radio

19

We would like to use these blocks in GRC

 You can check that this has not been implemented
(try it in GRC)

Modify nordic_nordic_tx.xml and
nordic_nordic_rx.xml accordingly!

Verify that your implementation works in GRC

3. Building a nrf24L01+ transceiver with GNU Radio

20

 Result

V1
public constructor

3. Building a nrf24L01+ transceiver with GNU Radio

21

 Result

V1

3. Building a nrf24L01+ transceiver with GNU Radio

 Let’s build a NRF24L01+ receiver with gr-nordic and GRC

We have two STM32 boards fitted with NRF24L01+ modules as test
transmitters

• They send an Enhanced ShockBurst (ESB) Packet every 0.5s
• Payload is the room temperature. E.g.: 20.0°C
• ESB packet:

Address length 5 bytes

Address 0x55 0x55 0x55 0x55 0x55

Payload size 8 bytes

Payload 0x20 0x20 0x20 0x20 + Temp (XX.X)

CRC length 2 bytes

Data Rate 2Mbits/s

RF channel 85 (2485MHz)

22

3. Building a nrf24L01+ transceiver with GNU Radio

23

Let us first have a try with the existing Python
example nordic_receiver.py

o gr-nordic is said to be SDR agnostic. It uses gr-
osmosdr which does not work with the ADALM-
PLUTO.

 modify nordic_receiver.py accordingly

 Study nordic_receiver.py and identify the relevant
blocks and their connections

3. Building a nrf24L01+ transceiver with GNU Radio

24Blocks: Pluto_source, lpf, gfsk_demod, nordic_rx and nordictap_printer

 Modifications and the blocks

V2

3. Building a nrf24L01+ transceiver with GNU Radio

25

 Integration of the nordictap_printer block

Create a python file in gr-nordic/python called
nordic_blocks.py, copy the code of
nordictap_printer found in nordic_receiver.py and
paste it into nordic_blocks.py

Add nordic_blocks.py to the module by modifying
accordingly CMakeLists.py and __init__.py

Create a GRC xml file for the new nordictap_printer
block

Rebuild the module

V3

3. Building a nrf24L01+ transceiver with GNU Radio

26

Create a GRC Nordic receiver flowgraph

 Using the new blocks and appropriate GNU Radio
blocks design a GRC flowgraph receiver

 Visualize the incoming packets. Add a power
squelch block and synchronize the time sink block
with the squelch_sob tag

 Study gfsk.py located in /usr/lib/python2.7/dist-
packages/gnuradio/digital and in particular the
gfsk_mod hier block. Expose the blocks that
compose gfsk_mod

3. Building a nrf24L01+ transceiver with GNU Radio

27

 This is my receiver:

V4

3. Building a nrf24L01+ transceiver with GNU Radio

28

 GFSK modulation in a nutshell

 Is defined by:

 E is the bit energy, T is the symbol duration and fc is the carrier
frequency.

 Transmitted information is contained in the phase (angle) term:

 where i is the message signal (here +1/-1) and:

 where q(t) describes the shape of the phase transitions whose magnitude
is proportional to the modulation index h

3. Building a nrf24L01+ transceiver with GNU Radio

29

 We have:

 Pulse shaping

3. Building a nrf24L01+ transceiver with GNU Radio

30

 Gaussian filters have an impulse response h(t) given by:

 B is the filter’s -3dB bandwidth. Caracterised by BT product, e.g. BT = 0.5
for Bluetooth.

3. Building a nrf24L01+ transceiver with GNU Radio

31

 GFSK modulator

 Have a look in gfsk.py to see how it is done in GNU
Radio!

x t()Coder

Bits ak

s t()

2h

t ()t

cos()

sin()

+

-

s t r t h t() ()* ()

 k
k

a t kT

 cos 2 cf t

 sin 2 cf t

3. Building a nrf24L01+ transceiver with GNU Radio

32

 GFSK demodulator (phase shift discriminator)

 We have:

3. Building a nrf24L01+ transceiver with GNU Radio

33

 After low pass filtering and arctan operation we get:

 The differentiation operation leads to:

 Have a look in gfsk.py to see how it is done in GNU Radio! Rather
something like that?

3. Building a nrf24L01+ transceiver with GNU Radio

34

 Something working behind the scene: Wireshark to decode
Nordic ESB packets

>> sudo apt-get install wireshark
>> sudo groupadd wireshark
>> sudo usermod -a -G wireshark #yourusername#
>> sudo chgrp wireshark /usr/bin/dumpcap
>> sudo chmod 750 /usr/bin/dumpcap
>> sudo setcap cap_net_raw,cap_net_admin=eip
/usr/bin/dumpcap
>> sudo getcap /usr/bin/dumpcap
>> cd ~/gr-nordic/
>> sudo wireshark -X
lua_script:wireshark/nordic_dissector.lua -i lo -k -f udp

3. Building a nrf24L01+ transceiver with GNU Radio

35

 GNU Radio message passing interface and PMTs
In the case of packet transmission we are not interested in

data streaming. We would like to transmit asynchronous
messages.

In GNU Radio there are two mecanisms to pass messages:
Synchronously to a data stream, using stream tags
Asynchronously, using the message passing interface

From a programming perspective a message can be
represented as a data type.

In Python, this is not a problem, since it is weakly typed
C++ on the other hand is strongly typed, and it is not possible

to create a variable without knowing its type

In GNU Radio we need to exchange the same data objects
between Python and C++ Polymorphic Types or PMTs

3. Building a nrf24L01+ transceiver with GNU Radio

36

Hence messages are PMTs and can contain
anything
Commonly vectors of bytes for PDUs
Or a dictionary (Key: value pair)

We need to understand a minimum how PMTs work.
Let’s have a look here:

https://wiki.gnuradio.org/index.php/Guided_Tutorial_Programming_Topics#5.1_Polym
orphic_Types_.28PMT.29

3. Building a nrf24L01+ transceiver with GNU Radio

37

Let’s build a transmitter

 The nordic_transmitter block requires a message input block
 This message has to be a PMT
 The PMT will be made up of these fields:

channel index = 0
channel = 85
header.datarate = 2
header.address_length = 5
header.payload_length = 8
header.sequence_number = 0
header.no_ack = 0
header.crc_length = 2
Address = 0x55 0x55 0x55 0x55 0x55
payload = 0x20 0x20 0x20 0x20 0x32 0x30 0x2E 0x30

We would like to send this packet every 0.5s (same as the STM32 +
NRF24L01+ breakout board)

3. Building a nrf24L01+ transceiver with GNU Radio

38

Let’s build a transmitter

To validate the transceiver chain, build a TX/RX loop model
with GRC.

Some tips:
o Use a Message Strobe block as input to the nordic_tx

block
o Take care of the PMT (look at line 79 of nordic_tx_impl.cc)!

Your model is complete but it does not work…
o Find the bug in nordic_tx_impl.cc!

OK it’s working now: let’s build a transmitter model.

Check your model with your neighbour as a receiver

3. Building a nrf24L01+ transceiver with GNU Radio

39

 Here are my models:

V5

V6

3. Building a nrf24L01+ transceiver with GNU Radio

40

 Adding a length tag to the nordic_tx block

This can be useful to synchronise vizualisation blocks
Edit nordic_tx_impl.cc and add a tag named packet_len

whose value is the length of the produced packet
Tips:

Have a look here:

Our packet_len should increase because of the byte to bit
conversion and the upsampling rate. How can we do that?

Get, build and install gr-foo (maint-3.7 branch). You will find a
nice block called burst tagger!

https://wiki.gnuradio.org/index.php/Guided_Tutorial_Programming_Topics#5.2.1_A
dding_tags_to_the_QPSK_demodulator

3. Building a nrf24L01+ transceiver with GNU Radio

41

 Here is my model:

V7

gr-foo burst
tagger block

3. Building a nrf24L01+ transceiver with GNU Radio

42

Creating our own nordictap_transmitter block
 part of this block in
nordic_channelized_transmitter.py
Does not meet our needs for GRC
We want our block to be triggered by a message

strobe block
User can enter easily packet data from GRC block
Write this block and add it to nordic_blocks.py
Create the associated GRC

nordic_nordictap_transmitter.xml
Add your block to the GRC transmitter model and

check that everything works

3. Building a nrf24L01+ transceiver with GNU Radio

43

 Here is my model:

V8

3. Building a nrf24L01+ transceiver with GNU Radio

44

 Can we build the TX with existing GNU Radio blocks?

3. Building a nrf24L01+ transceiver with GNU Radio

45

 Homework: build a BLE Advertiser with gr-nordic blocks

1 –

2 –

3 –

4 – Conclusion

Outline

Outline

4. Conclusion

46

Logitech research firmware demo
How to increase your knowledge in GNU

Radio: the electronics engineer’s point of
view

GNU Radio Packet Communications
Several OOT implementations available:

• gr-burst (Tim O’Shea)
• gr-eventstream (Tim O’Shea) example

fsk mod/demod or psk mod/demod
• Digital communication point of view
• gr-packetizer (Thomas Verelst)

THANK YOU FOR YOUR
ATTENTION!

References

[1] https://wiki.gnuradio.org/index.php/Tutorials

