
Hacking Nordic proprietary protocol with GNU
Radio

H. Boeglen

European GNURadio days 2019

XLIM, UMR CNRS 6172, Université de Poitiers, France

1 – Nordic Semiconductor 2.4GHz Proprietary
solutions

2 – Bastille Research gr-nordic OOT module

3 – Building a nrf24L01+ transceiver with
GNU Radio

4 – Conclusion

Outline

Outline

1 – Nordic Semiconductor 2.4GHz Proprietary
solutions

2 –

3 –

4 –

Outline

Outline

1. Nordic Semiconductor 2.4GHz Proprietary solutions

1

 NRF24L01+
 Well known by embedded systems guys
 This module can be found on Chineese sites for less than 1€

 For that price most of them are fake (chip copied)

Original (250nm) Fake (350nm)

1. Nordic Semiconductor 2.4GHz Proprietary solutions

2

 NRF24L01+
 Inside NRF24L01+ transceiver

1. Nordic Semiconductor 2.4GHz Proprietary solutions

3

 NRF24L01+
 Main features:

– Worldwide 2.4GHz ISM band operation, 126 RF channels

– GFSK modulation

– 250kbps, 1 and 2Mbps air data rate

– Programmable output power: 0, -6, -12 or -18dBm

– 11.3mA at 0dBm output power

– -94dBm sensitivity at 250kbps

– 1 to 32 bytes dynamic payload length with automatic
packet handling

– Host interface : 4-pin hardware SPI

– 1.9 to 3.6V supply range

https://infocenter.nordicsemi.com/pdf/nRF24L01P_PS_v1.0.pdf?cp=8_4_0_0

1. Nordic Semiconductor 2.4GHz Proprietary solutions

4

 NRF24L01+
 Enhanced ShockBurst (ESB) protocol

1. Nordic Semiconductor 2.4GHz Proprietary solutions

5

 Other NRF Chips
 NRF24LU1+ = NRF24L01+ + USB FS + 8051. Found in Microsoft and

Logitech keyboards and mice
 NRF24L01+ and NRF24LU1+ are not recommended for new designs

 More on this dongle later on

1. Nordic Semiconductor 2.4GHz Proprietary solutions

6

 Other NRF Chips
 NRF52 series (SoC = RF + ARM Cortex M4) are the replacement chips

NRF52832 DK
40€

 NRF52 series can still use Nordic proprietary protocol (ESB)

1. Nordic Semiconductor 2.4GHz Proprietary solutions

7

 Where do we find NRF Chips
 Microsoft and Logitech wireless keyboards and mice
 Drone remote controllers
 Sport watches
 Bike equipment
 Heart rate monitors…

1. Nordic Semiconductor 2.4GHz Proprietary solutions

8

 Well known technology
o Lots of resources about hacks (mice, drones etc,)
o Uses packet communication: interesting to fiddle with it in GNU Radio

 Goal of this tutorial: to build a Nordic ESB compliant
transceiver with GNU Radio

 Two STM32 boards fitted with NRF24L01+ breakout board transmitting
the room temperature every 0.5s (one at 2485MHz and the other at
2500MHz)
 STM32 program + PCB shield (available for those interested)

1 –

2 – Bastille Research gr-nordic OOT module

3 –

4 –

Outline

Outline

2. Bastille Research gr-nordic OOT module

9

 Do we have to start from nothing?
 Not many up to date implementations
 Some of them use the old message queue way of packet transmission,

e.g. : https://github.com/funoverip/gr-cc1111
 I came up with the gr-nordic OOT module from Bastille Research
 Uses GNU Radio message passing interface
 Has been designed to identify vulnerabilities of wireless keyboards and

mice
 Presented at DEF CON 24 (2016) hacking convention

2. Bastille Research gr-nordic OOT module

10

2. Bastille Research gr-nordic OOT module

11

2. Bastille Research gr-nordic OOT module

12

2. Bastille Research gr-nordic OOT module

13

2. Bastille Research gr-nordic OOT module

14

2. Bastille Research gr-nordic OOT module

15

 For more details see:

https://github.com/BastilleResearch/mousejack/tree/master/doc/pdf

1 –

2 –

3 – Building a nrf24L01+ transceiver with
GNU Radio

4 –

Outline

Outline

3. Building a nrf24L01+ transceiver with GNU Radio

16

 Let’s discover gr-nordic!

Get and build gr-nordic:

>> git clone
https://github.com/BastilleResearch/gr-
nordic.git
>> cd gr-nordic
>> mkdir build
>> cd build
>> cmake ../
>> make –j2
>> sudo make install
>> sudo ldconfig

3. Building a nrf24L01+ transceiver with GNU Radio

 Two main blocks:
* nordic_tx : input = nordictap_in message output =
stream of uint8_t

17

3. Building a nrf24L01+ transceiver with GNU Radio

* nordic_rx : input = stream of uint8_t output =
nordictap_out message

18

3. Building a nrf24L01+ transceiver with GNU Radio

19

We would like to use these blocks in GRC

 You can check that this has not been implemented
(try it in GRC)

Modify nordic_nordic_tx.xml and
nordic_nordic_rx.xml accordingly!

Verify that your implementation works in GRC

3. Building a nrf24L01+ transceiver with GNU Radio

20

 Result

V1
public constructor

3. Building a nrf24L01+ transceiver with GNU Radio

21

 Result

V1

3. Building a nrf24L01+ transceiver with GNU Radio

 Let’s build a NRF24L01+ receiver with gr-nordic and GRC

We have two STM32 boards fitted with NRF24L01+ modules as test
transmitters

• They send an Enhanced ShockBurst (ESB) Packet every 0.5s
• Payload is the room temperature. E.g.: 20.0°C
• ESB packet:

Address length 5 bytes

Address 0x55 0x55 0x55 0x55 0x55

Payload size 8 bytes

Payload 0x20 0x20 0x20 0x20 + Temp (XX.X)

CRC length 2 bytes

Data Rate 2Mbits/s

RF channel 85 (2485MHz)

22

3. Building a nrf24L01+ transceiver with GNU Radio

23

Let us first have a try with the existing Python
example nordic_receiver.py

o gr-nordic is said to be SDR agnostic. It uses gr-
osmosdr which does not work with the ADALM-
PLUTO.

 modify nordic_receiver.py accordingly

 Study nordic_receiver.py and identify the relevant
blocks and their connections

3. Building a nrf24L01+ transceiver with GNU Radio

24Blocks: Pluto_source, lpf, gfsk_demod, nordic_rx and nordictap_printer

 Modifications and the blocks

V2

3. Building a nrf24L01+ transceiver with GNU Radio

25

 Integration of the nordictap_printer block

Create a python file in gr-nordic/python called
nordic_blocks.py, copy the code of
nordictap_printer found in nordic_receiver.py and
paste it into nordic_blocks.py

Add nordic_blocks.py to the module by modifying
accordingly CMakeLists.py and __init__.py

Create a GRC xml file for the new nordictap_printer
block

Rebuild the module

V3

3. Building a nrf24L01+ transceiver with GNU Radio

26

Create a GRC Nordic receiver flowgraph

 Using the new blocks and appropriate GNU Radio
blocks design a GRC flowgraph receiver

 Visualize the incoming packets. Add a power
squelch block and synchronize the time sink block
with the squelch_sob tag

 Study gfsk.py located in /usr/lib/python2.7/dist-
packages/gnuradio/digital and in particular the
gfsk_mod hier block. Expose the blocks that
compose gfsk_mod

3. Building a nrf24L01+ transceiver with GNU Radio

27

 This is my receiver:

V4

3. Building a nrf24L01+ transceiver with GNU Radio

28

 GFSK modulation in a nutshell

 Is defined by:

 E is the bit energy, T is the symbol duration and fc is the carrier
frequency.

 Transmitted information is contained in the phase (angle) term:

 where i is the message signal (here +1/-1) and:

 where q(t) describes the shape of the phase transitions whose magnitude
is proportional to the modulation index h

3. Building a nrf24L01+ transceiver with GNU Radio

29

 We have:

 Pulse shaping

3. Building a nrf24L01+ transceiver with GNU Radio

30

 Gaussian filters have an impulse response h(t) given by:

 B is the filter’s -3dB bandwidth. Caracterised by BT product, e.g. BT = 0.5
for Bluetooth.

3. Building a nrf24L01+ transceiver with GNU Radio

31

 GFSK modulator

 Have a look in gfsk.py to see how it is done in GNU
Radio!

x t()Coder

Bits ak

s t()

2h



t  ()t

cos()

sin()

+

-

s t r t h t() ()* ()

 k
k

a t kT 

 cos 2 cf t

 sin 2 cf t

3. Building a nrf24L01+ transceiver with GNU Radio

32

 GFSK demodulator (phase shift discriminator)

 We have:

3. Building a nrf24L01+ transceiver with GNU Radio

33

 After low pass filtering and arctan operation we get:

 The differentiation operation leads to:

 Have a look in gfsk.py to see how it is done in GNU Radio! Rather
something like that?

3. Building a nrf24L01+ transceiver with GNU Radio

34

 Something working behind the scene: Wireshark to decode
Nordic ESB packets

>> sudo apt-get install wireshark
>> sudo groupadd wireshark
>> sudo usermod -a -G wireshark #yourusername#
>> sudo chgrp wireshark /usr/bin/dumpcap
>> sudo chmod 750 /usr/bin/dumpcap
>> sudo setcap cap_net_raw,cap_net_admin=eip
/usr/bin/dumpcap
>> sudo getcap /usr/bin/dumpcap
>> cd ~/gr-nordic/
>> sudo wireshark -X
lua_script:wireshark/nordic_dissector.lua -i lo -k -f udp

3. Building a nrf24L01+ transceiver with GNU Radio

35

 GNU Radio message passing interface and PMTs
In the case of packet transmission we are not interested in

data streaming. We would like to transmit asynchronous
messages.

In GNU Radio there are two mecanisms to pass messages:
Synchronously to a data stream, using stream tags
Asynchronously, using the message passing interface

From a programming perspective a message can be
represented as a data type.

In Python, this is not a problem, since it is weakly typed
C++ on the other hand is strongly typed, and it is not possible

to create a variable without knowing its type

In GNU Radio we need to exchange the same data objects
between Python and C++  Polymorphic Types or PMTs

3. Building a nrf24L01+ transceiver with GNU Radio

36

Hence messages are PMTs and can contain
anything
Commonly vectors of bytes for PDUs
Or a dictionary (Key: value pair)

We need to understand a minimum how PMTs work.
Let’s have a look here:

https://wiki.gnuradio.org/index.php/Guided_Tutorial_Programming_Topics#5.1_Polym
orphic_Types_.28PMT.29

3. Building a nrf24L01+ transceiver with GNU Radio

37

Let’s build a transmitter

 The nordic_transmitter block requires a message input block
 This message has to be a PMT
 The PMT will be made up of these fields:

channel index = 0
channel = 85
header.datarate = 2
header.address_length = 5
header.payload_length = 8
header.sequence_number = 0
header.no_ack = 0
header.crc_length = 2
Address = 0x55 0x55 0x55 0x55 0x55
payload = 0x20 0x20 0x20 0x20 0x32 0x30 0x2E 0x30

We would like to send this packet every 0.5s (same as the STM32 +
NRF24L01+ breakout board)

3. Building a nrf24L01+ transceiver with GNU Radio

38

Let’s build a transmitter

To validate the transceiver chain, build a TX/RX loop model
with GRC.

Some tips:
o Use a Message Strobe block as input to the nordic_tx

block
o Take care of the PMT (look at line 79 of nordic_tx_impl.cc)!

Your model is complete but it does not work…
o Find the bug in nordic_tx_impl.cc!

OK it’s working now: let’s build a transmitter model.

Check your model with your neighbour as a receiver

3. Building a nrf24L01+ transceiver with GNU Radio

39

 Here are my models:

V5

V6

3. Building a nrf24L01+ transceiver with GNU Radio

40

 Adding a length tag to the nordic_tx block

This can be useful to synchronise vizualisation blocks
Edit nordic_tx_impl.cc and add a tag named packet_len

whose value is the length of the produced packet
Tips:

Have a look here:

Our packet_len should increase because of the byte to bit
conversion and the upsampling rate. How can we do that?

Get, build and install gr-foo (maint-3.7 branch). You will find a
nice block called burst tagger!

https://wiki.gnuradio.org/index.php/Guided_Tutorial_Programming_Topics#5.2.1_A
dding_tags_to_the_QPSK_demodulator

3. Building a nrf24L01+ transceiver with GNU Radio

41

 Here is my model:

V7

gr-foo burst
tagger block

3. Building a nrf24L01+ transceiver with GNU Radio

42

Creating our own nordictap_transmitter block
 part of this block in
nordic_channelized_transmitter.py
Does not meet our needs for GRC
We want our block to be triggered by a message

strobe block
User can enter easily packet data from GRC block
Write this block and add it to nordic_blocks.py
Create the associated GRC

nordic_nordictap_transmitter.xml
Add your block to the GRC transmitter model and

check that everything works

3. Building a nrf24L01+ transceiver with GNU Radio

43

 Here is my model:

V8

3. Building a nrf24L01+ transceiver with GNU Radio

44

 Can we build the TX with existing GNU Radio blocks?

3. Building a nrf24L01+ transceiver with GNU Radio

45

 Homework: build a BLE Advertiser with gr-nordic blocks

1 –

2 –

3 –

4 – Conclusion

Outline

Outline

4. Conclusion

46

Logitech research firmware demo
How to increase your knowledge in GNU

Radio: the electronics engineer’s point of
view

GNU Radio Packet Communications
Several OOT implementations available:

• gr-burst (Tim O’Shea)
• gr-eventstream (Tim O’Shea)  example

fsk mod/demod or psk mod/demod
• Digital communication point of view
• gr-packetizer (Thomas Verelst)

THANK YOU FOR YOUR
ATTENTION!

References

[1] https://wiki.gnuradio.org/index.php/Tutorials

