
A poor man’s VANET channel sounder
Hervé Boeglen, Benoît Hilt

Laboratoire MIPS
EA 2332

Université de Haute Alsace, France
herve.boeglen@uha.fr

Jean-François Cailbault, Rodolphe Vauzelle
Laboratoire XLIM-SIC

UMR CNRS 6172
Université de Poitiers, France

Abstract— This paper describes how it is possible to design a low-
cost Vehicular Ad hoc NETworks (VANET) channel sounder
using a popular Software Defined Radio (SDR) equipment. We
explain in details the main steps we followed in order to obtain a
fully 802.11p compliant transceiver. We then show preliminary
results obtained during a VANET measurement campaign. We
also underline the limits of this approach which are mainly fixed
by the SDR equipment used.

Keywords: VANET, channel modeling, Software Defined Radio

I. INTRODUCTION

In recent years, Vehicle-to-Vehicle (V2V) wireless
communications have received a lot of attention as they are
going to be a crucial issue in Intelligent Transportation
Systems (ITS). In particular, different applications will emerge
enabled by the exchange of information between cars. The
main ones concern the enhancement of road safety and the
reduction of the traffic impact on the environment. In the near
future, this technology is expected to allow the setting of car
networks called Vehicular Ad-Hoc Networks (VANETs). In
order to transmit information reliably on rapidly changing
vehicular channels one has to rely on a robust physical layer.
This is precisely the challenge the 802.11p working group was
facing in designing a physical layer standard for V2V
communications [1]. This physical layer has to be evaluated
by means of real-world measurements but also by means of
less costly simulations implementing realistic channel models.
Finding an accurate channel model for VANETs is still a
research issue since vehicular wireless channels exhibit
specific characteristics that makes them quite different from
the very well characterized mobile telephony channels [2].
One of the major issues when using simulators for VANETs
concerns the vehicular environment and therefore the realistic
modeling of the wireless propagation channel. Classical
network simulation tools like ns-2 or ns-3 are not accurate for
VANET simulation since they provide too simplistic
propagation models. In reference [3], we propose a semi-
deterministic VANET channel model which was integrated
into ns-2. This model is a compromise between a highly
accurate ray-tracing propagation simulator requiring a very
high processing time and a 3G mobile telephony statistical
channel model having a low processing time. Our simulations
showed a good agreement with the results compared to the
ray-tracing propagation simulator (taken as a reference). To go
a step further we decided to perform real world measurements

by to setting up a 802.11p platform which would serve as a
channel sounder. Using commercial 802.11p card cannot suit
our needs since they are made of chips which do not allow
accessing the OFDM IQ vectors. Of course we could have
used specialized equipment like the RUSK channel sounder
[4] but we did not have the budget. In fact, we could only
afford to spend 4500€ for this project. This is precisely what
this paper tries to address: is it possible to build a valuable
VANET channel sounder with such a small budget? The rest
of the paper is organized as follows. Section II describes the
electronic equipment we have chosen for this project. Section
III deals with the software we have designed to interface with
the electronic equipment. Section IV presents the organization
of the measurement campaign and shows some results we
have been able to obtain. Finally, section V concludes the
paper.

II. THE HARDWARE
The evolution of computers’ processing power following

Moore’s law has led to the concept of the Software Defined
Radio (SDR). The term was first coined in 1992 by J. Mitola
[5]. A SDR radio is a device which samples the desirable
signal coming from the antenna after a suitable band selection
filter. We can refer to a transceiver as a software radio if its
communication functions are realized as programs running on
a suitable processor. One of the major advantages of a SDR is
its reconfigurability. By simply changing the software, one
can adapt the system to different standards. This feature can be
fully utilized to design a 802.11p compliant physical layer.
Constrained by our limited budget we finally decided to buy
two USRP2 SDRs from Ettus Research [6]. These relatively
low cost SDRs are among the most popular ones and have the
advantage that they can be equipped with several RF
daughterboards covering a large part of the radio spectrum.
The USRP2 core is a low cost Xillinx Spartan 3E FPGA (see
Figure 1).

The code inside the FPGA is built around a 32 bit soft
processor which controls 4 IQ baseband transmit and receive
chains. The transmit chain uses 400MS/s 16 bits DACs
whereas the receive chain relies on 100MS/s ADCs. The data
are transferred to and from the computer via a Gigabit
Ethernet (GiE) interface. One problem we have faced with
USRP2 is the fact that the FPGA is used at 95% by the
baseband transceiver code. This means that the system cannot
be completed with user designed signal processing functions.

mailto:herve.boeglen@uha.fr�

For the RF part, XCVR2450 daughterboard was chosen
since it allows covering the VANET frequency band around
5.9GHz. We had to check first by a link budget analysis that
the transceiver range was enough for our VANET
applications. The transmitter power is 18dBm at 5.9GHz. The
receiver is based on Maxim’s MAX2629 IEEE802.11a
compliant chip. The transmitter and the receiver antennas have
a gain of 3dBi. The calculation gave us a maximum range of
500 meters for 16QAM in a Line Of Sight (LOS) situation.
When considering a fading margin of 20dB this range falls to
100 meters. According to these figures a set of 2 USRP2 can
therefore be used for 802.11p transmissions. The USRP2
comes with an open source software called Gnuradio. It is
with this API that we designed our 802.11p compliant
transceiver. The steps we followed are described in the next
section.

Figure 1. Ettus Research USRP2

III. THE SOFTWARE

The Gnuradio API is based on two languages. Python is in
charge of setting up the signal processing flow graph forming
the transceiver chain and for the synchronization between
blocks. The signal processing blocks which require a high
processing power are written in C++. The relation between
Python and C++ is made by SWIG [7].

There already exist a lot of applications running on USRPs
in several domains ranging from ZigBee to GSM. There is
also a 802.11p transmitter application designed by Fuxjäger et
al. [8]. We have used this implementation as a starting point
for our design.

The IEEE 802.11p physical layer has similar specifications
as IEEE 802.11a with some changes. In IEEE 802.11p, a
10MHz frequency bandwidth is used, instead of 20MHz
bandwidth in IEEE 802.11a, thus all parameters in the time
domain for IEEE 802.11p are doubled compared with the
IEEE 802.11a (see Table 1). As frequency selectivity is a
characteristic of VANET channels, 802.11p uses OFDM.

When implementing an 802.11p transceiver, the best
method we found was to use Annex G of the standard [9]. It is
a complete example of a packet encoding which gives the
results of the encoding at the end of each block ending up with
the baseband IQ vectors. Most of the blocks shown in Figure 2
for the encoder where designed in C++ using the IT++ library
[10].

We did the same for the corresponding blocks of the
decoder. At this point, we had everything needed to simulate a
802.11p transmission. But in order to perform a real
transmission, Automatic Gain Control (AGC) and

synchronization at the receiver is needed. Before being able to
decode a packet a 802.11p receiver has to accomplish the tasks
presented in Figure 3.

TABLE I. IEEE 802.11P KEY OFDM PARAMETERS

Number of data subcarriers 48
Number of pilot subcarriers 4

Subcarrier frequency spacing 156.2kHz
Occupied Bandwidth 8.28125MHz

Short training sequence duration 16μs
Long training sequence duration 16μs
Training sequence guard interval 3.2μs

PLCP preamble duration 32μs
Guard interval duration 1.6μs
OFDM Symbol duration 8μs

Figure 2. 802.11p encoder blocks

OFDM synchronization is a complex task. Many
algorithms for timing and frequency synchronization have
been proposed in the literature. Most of them are correlation
based algorithms making use of the short and/or long
preamble of the OFDM packet. For a complete treatment of
this subject we refer the interested reader to the following
references [11][12], for these are the one we found the more
useful. Figure 4 gives an example of the usage of the
synchronization algorithms found in references [11] and [12].

At this point of the project, all the receiver algorithms were
tested successfully but we reached the processing limits of our
PC. At rates up to 1MS/s everything went fine but there was
not possible to work at 10MS/s. To solve this issue there are
two solutions. The first one is to tune the IT++ code in order
to make it faster (IT++ code has not been designed for real
time applications) using a tool like Oprofile [13]. The second
consists in placing some of the algorithms (namely the AGC
and the synchronization algorithms) in the FPGA. This is not
possible with the USRP2 since there is not enough room left in
the FPGA but it is possible with a newer version called USRP
N210. Does it mean that we cannot use this equipment as a
VANET channel sounder? No, of course. Here is how we
overcame the problem. For a channel sounding application, we
only need to capture the signal after it has passed through a
10MHz bandpass filter and the AGC. The synchronization and
the decoding of the packets can therefore be performed off
line. Let us now put the system into action and describe the
measurement campaign we performed with it.

Figure 3. 802.11p receiver modes

Figure 4. Example of coarse time and Carrier Frequency Offset (CFO)

correction using the algorithms found in [11] and [12].

IV. THE MEASUREMENT CAMPAIGN

A. System setup
The campaign took place during the last week of October

2011. We could benefit of two instrumented cars owned by the
MIAM team of our lab which is specialized in car automation
systems. These two cars are equipped with a dSpace Autobox
[14] linked to an embedded PC running Windows XP. The
Autobox system can monitor all the car parameters such as
speed, GPS coordinates etc. As our Gnuradio 802.11p
implementation requires Linux, we had to bring two more PCs
(laptops), one for the transmitter and the other for the receiver
in charge with the packet recording. The two USRP2 were
fixed on the car roofs by a magnetic system (see Figure 5).

Concerning the radio communication side, the transmitter
was continuously transmitting data packets at 5.86GHz at
maximum power (i.e. 18dBm). Two types of packets were
sent according to the scenarios tested. It is well known in the
VANET community that on highways the channel coherence
time Tc can be as low as 0.3ms [15]. This means that when the
OFDM packet exceeds this time (typically for a packet longer
than 200 bytes; the maximum possible being 4095 bytes), the
packet suffers time selectivity. In order to check this effect, we
used a long packet on highway scenarios (Tp = 1.16ms, 143
OFDM symbols coded in QPSK at 9Mbits/s). For the other

scenarios a short packet was used (Tp = 88.1µs, 9 OFDM
symbols coded in QAM16 at 18Mbits/s). In both cases, we
leave a 0.13ms space between packets.

Figure 5. The cars used for the campaign

B. Tested scenarios
Before starting with the actual VANET scenarios we had

to find a safe area for system check. We found it near
Mulhouse with an abandoned military airbase rescue runway
of 2km long. This site was also suitable to test suburban
scenarios. During the week we successfully tested 12 typical
VANET scenarios we identified in Urban, Suburban and
Highway situations. Figure 6 shows an example of a Highway
scenario called A2 where the two vehicles run at 110km/h on
opposite sides of the road.

At the end of the week we had collected more than 150GB
of data for the different scenarios for which the duration
ranged from 20s to 2mns. The acquisition data rate was
10MS/s which was the maximum we could reach with the
USRP2.

C. First results
We are currently working on analyzing this big amount of

data but we can already show some interesting features of our
“poor man’s channel sounder”. The main idea is to use the
OFDM symbols sent (data + pilots) to extract the channel
frequency response H(f,t) (after IFFT) and to obtain the
channel impulse response h(τ,t). Figures 7 and 8 show an
example of these data extracted from a long packet
transmission. One can observe that we are clearly in a strong
LOS condition since the fading level observed is quite low.

V. CONCLUSION AND FUTURE WORK
We have presented a low cost channel sounder for VANET

which has been used in a one week measurement campaign.
From the primary idea to realization we faced quite a lot of
problems most of which we solved sometimes the hard way.
The things we learned in this experience can be summarized
by the following points:

• SDR technology is a mixture of digital electronics, signal

processing for communication and software engineering.
It is difficult to master all these domains.

• Writing software for real time applications requires
specific skills. Implementing real time algorithms in
fixed point arithmetic in an FPGA is also not trivial.

• SDR power is limited by the PC used. Although today’s
PCs are quite powerful, it is difficult to implement in real
time all the algorithms needed by a high rate IEEE
802.11 standard (AGC, synchronization, channel
estimation and decoding).

• One way to overcome the processing power problem is
to implement some of the algorithms in the FPGA (i.e.
AGC and synchronization). So be careful when you
choose your SDR platform! If you plan to use Ettus
Research products go for the USRP N210 product which
has a larger FPGA than the USRP2.

• Ettus Research SDR solution (USRP + Gnuradio)
Achilles’ heel is definitely the poor quality of the
documentation. As is usual with free software, you get
regular updates of the FPGA firmware and the Gnuradio
software which causes annoying compatibility problems.
Their so called Universal Hardware Driver (UHD) which
is supposed to work with all USRP platforms can
sometimes have peculiar behaviors. The fact that
National Instruments took over Ettus Research lets us
expect that there is going to be an improvement on these
points in the near future.

• Do not expect to transfer data between USRP2 and the
PC at a sustainable rate over 10MS/s. Although data are
transferred via a GiE interface, IQ data is coded on 32
bits (16bits for each I and Q channel). A higher rate
would have been much better for channel sampling.

Figure 6. A2 Highway scenario

0
20

40
60

80
100

0
10

20
30

40
50

60
-50

-40

-30

-20

-10

0

10

OFDM symbols

H(f,t)

Subcarriers

A
m

pl
itu

de
 (d

B
V)

Figure 7. Evolution of H(f,t) over the transmission of a long packet (A2

Highway scenario).

We expect that these remarks are going to be useful to
people wanting to follow the same approach. We are now
going to concentrate our work on the measurement data. We
expect to extract enough information (using a statistical
approach) to be able to set up some typical VANET channel
models to be integrated in our ns-2 software platform. These
will be, of course, made available to the community.

0 0.5 1 1.5 2 2.5 3 0
20

40
60

80
1000

0.1

0.2

0.3

0.4

0.5

0.6

OFDM symbol

h(τ,t)

Delay (µs)

A
m

pl
itu

de
 (V

)

Figure 8. Evolution h(τ,t) over the transmission of a long packet (A2

Highway scenario).

ACKNOWLEDGMENT
The authors acknowledge the support of the following

persons of the MIAM team from the MIPS laboratory: Michel
Basset, Jérémie Daniel and Joël Lambert.

REFERENCES
[1] 802.11p-2010 - IEEE Standard for Information technology--

Amendment 6: Wireless Access in Vehicular Environments
[2] A. Molisch, F. Tufvesson, J. Karedal, C. Mecklenbrauker, “A survey on

vehicle-to-vehicle propagation channels”, IEEE Wireless
Communications, vol.16, no.6, pp.12-22, Dec. 2009.

[3] J.Ledy, H.Boeglen, AM.Poussard, B.Hilt, R.Vauzelle, "A semi-
deterministic channel model for VANETs simulations ", International
Journal On Vehicular Technology, Volume 2012, Article ID 492105

[4] http://www.medav.de/rusk_mimo.html?&L=2
[5] J. Mitola, "The Software Radio", in IEEE National Telesys Conference,

May 1992.
[6] http://www.ettus.com/
[7] http://www.swig.org/
[8] P. Fuxjäger, A. Costantini, D. Valerio, P. Castiglione, G. Zacheo, T.

Zemen, F. Ricciato, “IEEE 802.11p Transmission Using GNURadio”,
6th Karlsruhe Workshop on Software Radios, March 2010.

[9] 802.11-2007 - IEEE Standard for Information technology -- Part 11:
Wireless LAN Medium Access Control (MAC) and Physical Laye
(PHY) Specifications.

[10] http://sourceforge.net/apps/wordpress/itpp/
[11] A. L. Troya Chinchilla, “Synchronization and Channel Estimation in

OFDM: Algorithms for Efficient Implementation of WLAN Systems”,
Brandenburgischen Technischen Universität Cottbus, PhD Thesis, 2004.

[12] M-J Canet et al. , “FPGA implementation of an OFDM-based WLAN
receiver”, Microprocessors and Microsystems, Elsevier, Volume 36,
Issue 3, May 2012.

[13] http://oprofile.sourceforge.net/news/
[14] http://www.dspace.com
[15] D. Stencil et al., “Performance of 802.11p Waveforms over the Vehicle-

to-Vehicle Channel at 5.9 GHz”, IEEE 802.11p working group, Sept.
2007.

http://www.medav.de/rusk_mimo.html?&L=2�
http://www.ettus.com/�
http://www.swig.org/�
http://sourceforge.net/apps/wordpress/itpp/�
http://oprofile.sourceforge.net/news/�
http://www.dspace.com/�

	I. Introduction
	II. The hardware
	III. The software
	IV. The Measurement campaign
	A. System setup
	B. Tested scenarios
	C. First results

	V. Conclusion and future work
	Acknowledgment
	References

