
A poor man’s VANET channel sounder 
Hervé Boeglen, Benoît Hilt 

Laboratoire MIPS 
EA 2332 

Université de Haute Alsace, France 
herve.boeglen@uha.fr 

 

Jean-François Cailbault, Rodolphe Vauzelle 
Laboratoire XLIM-SIC 

UMR CNRS 6172 
Université de Poitiers, France

 
Abstract— This paper describes how it is possible to design a low-
cost Vehicular Ad hoc NETworks (VANET) channel sounder 
using a popular Software Defined Radio (SDR) equipment. We 
explain in details the main steps we followed in order to obtain a 
fully 802.11p compliant transceiver. We then show preliminary 
results obtained during a VANET measurement campaign. We 
also underline the limits of this approach which are mainly fixed 
by the SDR equipment used. 
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I.  INTRODUCTION 

In recent years, Vehicle-to-Vehicle (V2V) wireless 
communications have received a lot of attention as they are 
going to be a crucial issue in Intelligent Transportation 
Systems (ITS). In particular, different applications will emerge 
enabled by the exchange of information between cars. The 
main ones concern the enhancement of road safety and the 
reduction of the traffic impact on the environment. In the near 
future, this technology is expected to allow the setting of car 
networks called Vehicular Ad-Hoc Networks (VANETs). In 
order to transmit information reliably on rapidly changing 
vehicular channels one has to rely on a robust physical layer. 
This is precisely the challenge the 802.11p working group was 
facing in designing a physical layer standard for V2V 
communications [1]. This physical layer has to be evaluated 
by means of real-world measurements but also by means of 
less costly simulations implementing realistic channel models. 
Finding an accurate channel model for VANETs is still a 
research issue since vehicular wireless channels exhibit 
specific characteristics that makes them quite different from 
the very well characterized mobile telephony channels [2]. 
One of the major issues when using simulators for VANETs 
concerns the vehicular environment and therefore the realistic 
modeling of the wireless propagation channel. Classical 
network simulation tools like ns-2 or ns-3 are not accurate for 
VANET simulation since they provide too simplistic 
propagation models. In reference [3], we propose a semi-
deterministic VANET channel model which was integrated 
into ns-2. This model is a compromise between a highly 
accurate ray-tracing propagation simulator requiring a very 
high processing time and a 3G mobile telephony statistical 
channel model having a low processing time. Our simulations 
showed a good agreement with the results compared to the 
ray-tracing propagation simulator (taken as a reference). To go 
a step further we decided to perform real world measurements 

by to setting up a 802.11p platform which would serve as a 
channel sounder. Using commercial 802.11p card cannot suit 
our needs since they are made of chips which do not allow 
accessing the OFDM IQ vectors. Of course we could have 
used specialized equipment like the RUSK channel sounder 
[4] but we did not have the budget. In fact, we could only 
afford to spend 4500€ for this project. This is precisely what 
this paper tries to address: is it possible to build a valuable 
VANET channel sounder with such a small budget? The rest 
of the paper is organized as follows. Section II describes the 
electronic equipment we have chosen for this project. Section 
III deals with the software we have designed to interface with 
the electronic equipment. Section IV presents the organization 
of the measurement campaign and shows some results we 
have been able to obtain. Finally, section V concludes the 
paper. 

 

II. THE HARDWARE 
The evolution of computers’ processing power following 

Moore’s law has led to the concept of the Software Defined 
Radio (SDR). The term was first coined in 1992 by J. Mitola 
[5]. A SDR radio is a device which samples the desirable 
signal coming from the antenna after a suitable band selection 
filter. We can refer to a transceiver as a software radio if its 
communication functions are realized as programs running on 
a suitable processor. One of the major advantages of a SDR is 
its reconfigurability. By simply changing the software, one 
can adapt the system to different standards. This feature can be 
fully utilized to design a 802.11p compliant physical layer. 
Constrained by our limited budget we finally decided to buy 
two USRP2 SDRs from Ettus Research [6]. These relatively 
low cost SDRs are among the most popular ones and have the 
advantage that they can be equipped with several RF 
daughterboards covering a large part of the radio spectrum. 
The USRP2 core is a low cost Xillinx Spartan 3E FPGA (see 
Figure 1).  

The code inside the FPGA is built around a 32 bit soft 
processor which controls 4 IQ baseband transmit and receive 
chains. The transmit chain uses 400MS/s 16 bits DACs 
whereas the receive chain relies on 100MS/s ADCs. The data 
are transferred to and from the computer via a Gigabit 
Ethernet (GiE) interface.  One problem we have faced with 
USRP2 is the fact that the FPGA is used at 95% by the 
baseband transceiver code. This means that the system cannot 
be completed with user designed signal processing functions.   
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For the RF part, XCVR2450 daughterboard was chosen 
since it allows covering the VANET frequency band around 
5.9GHz. We had to check first by a link budget analysis that 
the transceiver range was enough for our VANET 
applications. The transmitter power is 18dBm at 5.9GHz. The 
receiver is based on Maxim’s MAX2629 IEEE802.11a 
compliant chip. The transmitter and the receiver antennas have 
a gain of 3dBi. The calculation gave us a maximum range of 
500 meters for 16QAM in a Line Of Sight (LOS) situation. 
When considering a fading margin of 20dB this range falls to 
100 meters. According to these figures a set of 2 USRP2 can 
therefore be used for 802.11p transmissions. The USRP2 
comes with an open source software called Gnuradio. It is 
with this API that we designed our 802.11p compliant 
transceiver. The steps we followed are described in the next 
section. 

 
Figure 1.  Ettus Research USRP2 

III. THE SOFTWARE 

The Gnuradio API is based on two languages. Python is in 
charge of setting up the signal processing flow graph forming 
the transceiver chain and for the synchronization between 
blocks. The signal processing blocks which require a high 
processing power are written in C++.  The relation between 
Python and C++ is made by SWIG [7]. 

There already exist a lot of applications running on USRPs 
in several domains ranging from ZigBee to GSM. There is 
also a 802.11p transmitter application designed by Fuxjäger et 
al. [8]. We have used this implementation as a starting point 
for our design. 

The IEEE 802.11p physical layer has similar specifications 
as IEEE 802.11a with some changes. In IEEE 802.11p, a 
10MHz frequency bandwidth is used, instead of 20MHz 
bandwidth in IEEE 802.11a, thus all parameters in the time 
domain for IEEE 802.11p are doubled compared with the 
IEEE 802.11a (see Table 1). As frequency selectivity is a 
characteristic of VANET channels, 802.11p uses OFDM.  

When implementing an 802.11p transceiver, the best 
method we found was to use Annex G of the standard [9]. It is 
a complete example of a packet encoding which gives the 
results of the encoding at the end of each block ending up with 
the baseband IQ vectors. Most of the blocks shown in Figure 2 
for the encoder where designed in C++ using the IT++ library 
[10].  

We did the same for the corresponding blocks of the 
decoder. At this point, we had everything needed to simulate a 
802.11p transmission. But in order to perform a real 
transmission, Automatic Gain Control (AGC) and 

synchronization at the receiver is needed. Before being able to 
decode a packet a 802.11p receiver has to accomplish the tasks 
presented in Figure 3. 

TABLE I.  IEEE 802.11P KEY OFDM PARAMETERS 

Number of data subcarriers 48 
Number of pilot subcarriers 4 

Subcarrier frequency spacing 156.2kHz 
Occupied Bandwidth 8.28125MHz 

Short training sequence duration 16μs 
Long training sequence duration 16μs 
Training sequence guard interval 3.2μs 

PLCP preamble duration 32μs 
Guard interval duration 1.6μs 
OFDM Symbol duration 8μs 

 

 
Figure 2.  802.11p encoder blocks 

OFDM synchronization is a complex task. Many 
algorithms for timing and frequency synchronization have 
been proposed in the literature. Most of them are correlation 
based algorithms making use of the short and/or long 
preamble of the OFDM packet. For a complete treatment of 
this subject we refer the interested reader to the following 
references [11][12], for these are the one we found the more 
useful. Figure 4 gives an example of the usage of the 
synchronization algorithms found in references [11] and  [12]. 

At this point of the project, all the receiver algorithms were 
tested successfully but we reached the processing limits of our 
PC. At rates up to 1MS/s everything went fine but there was 
not possible to work at 10MS/s. To solve this issue there are 
two solutions. The first one is to tune the IT++ code in order 
to make it faster (IT++ code has not been designed for real 
time applications) using a tool like Oprofile [13]. The second 
consists in placing some of the algorithms (namely the AGC 
and the synchronization algorithms) in the FPGA. This is not 
possible with the USRP2 since there is not enough room left in 
the FPGA but it is possible with a newer version called USRP 
N210. Does it mean that we cannot use this equipment as a 
VANET channel sounder? No, of course. Here is how we 
overcame the problem. For a channel sounding application, we 
only need to capture the signal after it has passed through a 
10MHz bandpass filter and the AGC. The synchronization and 
the decoding of the packets can therefore be performed off 
line. Let us now put the system into action and describe the 
measurement campaign we performed with it. 



 
Figure 3.  802.11p receiver modes 

 
Figure 4.  Example of coarse time and Carrier Frequency Offset (CFO) 

correction using the algorithms found in [11] and [12]. 

IV. THE MEASUREMENT CAMPAIGN 

A. System setup 
The campaign took place during the last week of October 

2011. We could benefit of two instrumented cars owned by the 
MIAM team of our lab which is specialized in car automation 
systems. These two cars are equipped with a dSpace Autobox 
[14] linked to an embedded PC running Windows XP. The 
Autobox system can monitor all the car parameters such as 
speed, GPS coordinates etc. As our Gnuradio 802.11p 
implementation requires Linux, we had to bring two more PCs 
(laptops), one for the transmitter and the other for the receiver 
in charge with the packet recording. The two USRP2 were 
fixed on the car roofs by a magnetic system (see Figure 5). 

Concerning the radio communication side, the transmitter 
was continuously transmitting data packets at 5.86GHz at 
maximum power (i.e. 18dBm). Two types of packets were 
sent according to the scenarios tested. It is well known in the 
VANET community that on highways the channel coherence 
time Tc can be as low as 0.3ms [15]. This means that when the 
OFDM packet exceeds this time (typically for a packet longer 
than 200 bytes; the maximum possible being 4095 bytes), the 
packet suffers time selectivity. In order to check this effect, we 
used a long packet on highway scenarios (Tp = 1.16ms, 143 
OFDM symbols coded in QPSK at 9Mbits/s). For the other 

scenarios a short packet was used (Tp = 88.1µs, 9 OFDM 
symbols coded in QAM16 at 18Mbits/s). In both cases, we 
leave a 0.13ms space between packets.  

 

 
Figure 5.  The cars used for the campaign 

B. Tested scenarios 
Before starting with the actual VANET scenarios we had 

to find a safe area for system check. We found it near 
Mulhouse with an abandoned military airbase rescue runway 
of 2km long. This site was also suitable to test suburban 
scenarios. During the week we successfully tested 12 typical 
VANET scenarios we identified in Urban, Suburban and 
Highway situations. Figure 6 shows an example of a Highway 
scenario called A2 where the two vehicles run at 110km/h on 
opposite sides of the road.  

At the end of the week we had collected more than 150GB 
of data for the different scenarios for which the duration 
ranged from 20s to 2mns. The acquisition data rate was 
10MS/s which was the maximum we could reach with the 
USRP2. 

C. First results 
We are currently working on analyzing this big amount of 

data but we can already show some interesting features of our 
“poor man’s channel sounder”. The main idea is to use the 
OFDM symbols sent (data + pilots) to extract the channel 
frequency response H(f,t) (after IFFT) and to obtain the 
channel impulse response h(τ,t). Figures 7 and 8 show an 
example of these data extracted from a long packet 
transmission. One can observe that we are clearly in a strong 
LOS condition since the fading level observed is quite low. 

V. CONCLUSION AND FUTURE WORK 
We have presented a low cost channel sounder for VANET 

which has been used in a one week measurement campaign. 
From the primary idea to realization we faced quite a lot of 
problems most of which we solved sometimes the hard way. 
The things we learned in this experience can be summarized 
by the following points: 

 
• SDR technology is a mixture of digital electronics, signal 

processing for communication and software engineering. 
It is difficult to master all these domains.  

• Writing software for real time applications requires 
specific skills. Implementing real time algorithms in 
fixed point arithmetic in an FPGA is also not trivial. 



• SDR power is limited by the PC used. Although today’s 
PCs are quite powerful, it is difficult to implement in real 
time all the algorithms needed by a high rate IEEE 
802.11 standard (AGC, synchronization, channel 
estimation and decoding).  

• One way to overcome the processing power problem is 
to implement some of the algorithms in the FPGA (i.e. 
AGC and synchronization). So be careful when you 
choose your SDR platform! If you plan to use Ettus 
Research products go for the USRP N210 product which 
has a larger FPGA than the USRP2. 

• Ettus Research SDR solution (USRP + Gnuradio) 
Achilles’ heel is definitely the poor quality of the 
documentation. As is usual with free software, you get 
regular updates of the FPGA firmware and the Gnuradio 
software which causes annoying compatibility problems. 
Their so called Universal Hardware Driver (UHD) which 
is supposed to work with all USRP platforms can 
sometimes have peculiar behaviors. The fact that 
National Instruments took over Ettus Research lets us 
expect that there is going to be an improvement on these 
points in the near future.  

• Do not expect to transfer data between USRP2 and the 
PC at a sustainable rate over 10MS/s. Although data are 
transferred via a GiE interface, IQ data is coded on 32 
bits (16bits for each I and Q channel). A higher rate 
would have been much better for channel sampling. 

 

 
Figure 6.  A2 Highway scenario 
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Figure 7.  Evolution of H(f,t) over the transmission of a long packet (A2 

Highway scenario). 

We expect that these remarks are going to be useful to 
people wanting to follow the same approach. We are now 
going to concentrate our work on the measurement data. We 
expect to extract enough information (using a statistical 
approach) to be able to set up some typical VANET channel 
models to be integrated in our ns-2 software platform. These 
will be, of course, made available to the community. 
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Figure 8.  Evolution h(τ,t) over the transmission of a long packet (A2 

Highway scenario). 
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